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Abstract

This paper describes a biological model called reaction diffusion for
the spacial dynamics of chemicals. Reaction diffusion equations were first
described by Alan Turing in 1952 and have been used since for organic
texture synthesis in computer graphics. Here we will review the various
reaction diffusion models that have been developed as well as possible
simulation parameters for producing different pattern formations. Then
we cover the implementation of the reaction diffusion equations and the
results of such models.

1 Introduction

Texturing has been used extensively within graphics as an efficient way to add
information and detail to computer generated imagery. Despite there being
research into techniques for synthesising textures, it has not seen as much devel-
opment as rendering techniques and representation of three dimensional data.
There has been work on procedural techniques for noise generation such as that
described in Perlin’s seminal paper ”An Image Synthesizer” [5] or diffusion-
limited aggregation that was originally defined by Witten in ”Diffusion-Limited
Aggregation, a Kinetic Critical Phenomenon” [12]. These techniques have been
developed to produces pseudo random variation and are often used to represent
natural and biological patterns. They however produce limited variation in the
patterns created and have become recognisable due to repeated use.

Another approach is to develop such patterns using a simulation based upon
a biological model. This involves solving semi-linear partial differential equations
that define the rate of change between chemical species and the concentrations
on a cellular level. The idea was developed by Alan Turing in his paper ”The
Chemical Basis of Morphogenesis” [8] where he defined the original reaction
diffusion systems. Since Turing’s paper there have been many different models
and variations based upon the original equations.
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Another practical issue found with solving these equations is that they
requires numerical integration which can be very computationally expensive.
This is something that procedural approaches such as perlin noise avoid and
as a result give fast iterative feedback when used in production. This has
improved however with the development of massively parallel computation and
respecting languages as the equations support concurrent implementation. Other
advancements in numerical integration of reaction diffusion equations were
developed by Hundsdorfer in his book ”Numerical Solution of Time-Dependent
Advection-Diffusion-Reaction Equations” [2] which focused on variations of
higher order integrators.

2 Related Work

Alan Turing originally proposed reaction diffusion systems in [8] where he theo-
rised the existence of two or more molecules known as morphogens. During the
embryonic phase these would react and diffuse through cellular structures pro-
ducing chemical substrates that would later define development such as pigment
mutation. Research was then primarily found in fields other than graphics such
as chemical dynamics and mathematical biology until the early 1990s where it
was then used for texture synthesis. Here we will evaluate some of the different
models produced and their advantages in relation to graphics.

The first use of reaction diffusion systems in graphics was by Greg Turk
in ”Generating Synthetic Textures Using Reaction-Diffusion” [9] where he pro-
posed the basic idea of evaluating the equations over a grid. A year later he
released another paper called ”Generating Textures on Arbitrary Surfaces Using
Reaction-diffusion” [10] where he developed upon this and defined the Turk
model for the reaction part of Turing’s system. In this paper he describes how
the model can be used to generate patterns that resemble animal coatings on
geometric surfaces with continuity. Another development he made to achieve the
complexity needed was in using one simulation to define the parameters across a
surface for another simulation.

Andrew Witkin et al. during the same year also released a paper named
”Reaction-Diffusion Textures” [11] that defined another alternative model. Within
this model he defines three parts that are diffusion, dissipation and reaction
where dissipation is specifically separate from reaction. Anisotropic diffusion is
also taken into account to produce a wider range of pattern formation as well as
better sampling across non-uniform geometry.

Later John Pearson in ”Complex Patterns in a Simple System” [4] applied
the Gray-Scott model to Turing’s equations by introducing a feed rate into the
reaction. Pearson extensively tested and recorded the results from changing two
parameters. Those being the aforementioned feed rate into the simulation as
well as a kill rate that performs a similar role to Witkin’s dissipation. Pearson
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managed to produce a wide range of results using the Gray-Scott model and has
become a popular choice in current implementations.

More recently Alan Sanderson advances upon many of these papers in ”Ad-
vanced Reaction-Diffusion Models for Texture Synthesis” [7] and describes a
range of models and extensions upon the original concept. In a similar manner to
Witkin, he uses the Brusselator model to linearly link two simulations, although
these run simultaneously rather than sequentially. Sanderson also looks at how
a simulation can be controlled using not only the feed and kill parameters but
also varying the relating diffusion rates of both morphogens.

3 Morphogenesis

Turing’s original work in finding a system that combines a mathematical model
to a biological phenomenon has been very influential and is the basis upon which
all later models are built. These later models were created while studying spacial
dynamics for chemical reactions in a more general field than just that of graphics.
The general form describes two morphogen types or chemicals and their reaction
within space. One chemical will transform into another while constantly being
replenished. The other chemical that is currently being transformed into will
slowly dissipate. This happens locally within space and across a time derivative
and is the reaction part of the equation. The chemicals are then transformed
through space at different rates using diffusion. This is the only non-local part
and as result makes adopting space of a higher dimension rather trivial although
computationally expensive. This process is then integrated over time produc-
ing a derivative that results in what Kondo et al. [3] describes as Turing patterns.

Below in equation one, you can see Turing’s original system for producing
both the derivative of chemicals a and b over time.

∆a =
∂a

∂t
= F (a, b) + da∇2a

∆b =
∂b

∂t
= G(a, b) + db∇2b

(1)

Here a and b both represent the concentration of a chemical at a specific location
in space. F and G are functions that dictate change in the chemical’s concentra-
tion, this represents the reaction and involves both chemicals. Then there is the
∇2 that is a laplacian for finding the change of concentration through space. This
becomes the diffusion part and d represents the rate of diffusion for that chemical.

If for example nearby locations were of greater concentration in chemical a,
than that found at the current location, then ∇2a would be greater than zero.
If the nearby locations were of less value than the current location then the
laplacian would be less than zero.
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Both the parts of the equation can be expanded into the form described in
Turing’s paper. Due to the computational cost and limited resources available
when this was written, the diffusion through space is two dimensional as can be
seen below.

∂ai
∂t

= s(16− aibi) + da(ai+1 + ai−1 − 2ai)

∂bi
∂t

= s(aibi − bi − βi) + db(bi+1 + bi−1 − 2bi)

(2)

As before the d gives the rate of diffusion but the s also gives the rate of reaction
while i represents an index into the array. This is referred to as the original
Turing model.

4 Other Models

Another model created by Turk [10] was developed in relation to graphics. In
Turk’s paper he described how reaction diffusion systems can be used in graphics
by simulating across a parametric surface. This requires finding the derivative
of the chemical concentration using a two dimensional laplacian. This can be
written as

∇2 =
∂2a

∂x2
+
∂2a

∂y2
(3)

where both x and y represent a position in space. The full equation is simply an
extension of Turing’s model and can be written as

∂aij
∂t

= s(16− aijbij) + da(ai+1j + ai−1j + aij+1 + aij−1 − 4aij)

∂bij
∂t

= s(aijbij − bij − βij) + db(bi+1j + bi−1j + bij+1 + bij−1 − 4bij)

(4)

where both i and j represent indices into a two dimensional array. Turk then
repeats the simulation using the previous simulation to perturb current the
parameters to produce new patterns.

Witten et al. released another paper on the application the same year as
Turk but with a different model. They further generalized the design to include
anisotropic and space varying diffusion. They found that this could produce a
wider range of patterns. The Witten-Kass model also includes a dissipation part
and can be written as

C ′ij = a2∇2Cij − bCij +Rij (5)

where Cij is the chemical and C ′ij is its time derivative. The laplacian is

represented by ∇2Cij and a as its rate of diffusion. The rate of dissipation is
bC where b is a constant and Rij represents the reaction part of the equation.
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Although still constructed in similar manner to the previous models, this is
substantially different and does not require multiple chemicals. Witten also
expresses the laplacian as

∇2Cij ≈
Ci+1j + Ci−1j + Cij+1 + Cij−1 − 4Cij

h2
(6)

where h is the distance between the current and neighbouring samples. Witten
wrote that it could be written as a convolution of the chemical array

L =
1

h2

0 1 0
1 −4 1
0 1 0

 (7)

where L is used as a mask and the values in the matrix are the coefficients
from equation 6. As for anisotropic diffusion, Witten first constructs a diffusion
matrix taking into account the rotation

A =

[
a21 cos2 θ + a22 sin2 θ (a22 − a21) cos θ sin θ
(a22 − a21) cos θ sin θ a22 cos2 θ + a21 sin2 θ

]
(8)

where a1 is the diffusion in the [cos θ, sin θ] direction and a2 is the diffusion in
the [− sin θ, cos θ] direction. They then use this to construct an anisotropic mask
in the form

M =

−a12 2a22 a12
2a11 −4(a11 + a22)− 2h2b 2a11
a12 2a22 −a12

 (9)

where a is the element within the diffusion matrix. They also introduce another
two dimensional array called a diffusion map. This array allows the diffusion
matrix to vary with position by representing it’s three coefficients at each finite
position in space. This can also be much courser than the chemical array and
be used with bilinear interpolation.

Pearson [4] defines another variation based upon the Gray-Scott [1] model.
This model describes the reactions between three chemicals and is originally
written in the form

U + 2V → 3V

V → P
(10)

where both operations are irreversible, ultimately resulting in P as a product.
Pearson then adds a feed term to U while U and V are both removed during
the process, expressing the model in terms of a reaction diffusion system. This
can be written as

∂U

∂t
= dU∇2U − UV 2 + f(1− U)

∂V

∂t
= dV∇2V + UV 2 − (f + k)V

(11)
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where U and V are both the reacting chemicals. The feed and kill coefficients
are represented by f and k respectively. This model has the effect of being
activator-substrate meaning that as one chemical becomes more concentrated
the other becomes weaker resulting in an inverse pattern formation. This will
be demonstrated during a later part of this paper.

In a more recent paper [7], Sanderson describes a reaction diffusion system
that is linearly dependent on another and visa-versa. This coupling approach
is similar to that described by Turk [10] but runs concurrently rather than
sequentially. It can be written in the form of

∂ai
∂t

= F (ai, bi) + µ(aj − ai) + dai∇2ai

∂bi
∂t

= G(ai, bi) + ν(bj − bi) + dbi∇2bi

(12)

and also another identical system with the i and j indices reversed. Both µ and
ν are the coupling terms and are typically µ = ν. Sanderson also implemented
the Brusselator model [6] for the reaction part of the equation, which can be
written in the form

F (a, b) = s(α− (1 + β)a+ a2b)

G(a, b) = s(βa− a2b)
(13)

where α and β are both the kill and feed rates respectively while s, as before is
the rate of reaction.

5 Implementation

For implementation I first developed a C++ graphics environment to allow
instant feedback of the simulation within a frame buffer. It also allowed me to
control the time of each iteration during the integration very accurately and
allow synchronisation of computation and visualisation. The submitted code
is currently written so that the simulation will run at 60 frames a second and
compensate for delta time steps. As reaction diffusion systems are naturally
highly concurrent I decided to implement the code on a GPU for massively
parallel computation. I started by creating a working simulation on the CPU
that was highly vectorized and this made it simple to transfer the code to both
OpenCL and CUDA compute languages for the GPU. As for submission you
will find the implementation for OpenCL as the runtime compilation of kernels
make it simpler to compile. For further information on GPU implantation there
is a paper [7] written by Sanderson following his previous research on reaction
diffusion systems.

6



I used Pearson’s adaptation of the Gray-Scott model [4] as it produced a
wide range of results and was relatively stable. It was then simulated using
an implicit Euler integration. To improve stability I altered Witten’s original
convolution mask to the form:

M =
1

h2

0.05 0.2 0.05
0.2 −1 0.2
0.05 0.2 0.05

 (14)

This allowed for a larger delta time and faster computation. Using data gathered
by Pearson [4] I was able to simulate many different patterns and formations.
Below are just some examples of the results that were obtained. I also experi-

Figure 1: Example Simulations

mented with diffusion parameters for each chemical and found the same results
as those recorded by Sanders [7]. Changing the diffusion relative between the
chemicals has no effect other than altering the scale of the simulation. This

Figure 2: Relative Diffusion

can be seen in the left image of Figure 2 as opposed to the bottom left image
of Figure 1. Both these simulations have a diffusion ratio of 1

2 in contrast the
ratio of 1

16 seen in the right image of Figure 2. Finally I also visualised both the
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chemical concentrations to find an inverse pattern is produced, validating the
activator-substrate behaviour of the Gray-Scott model. The paramaters for such
patterns can be found in the paramters.txt file within the source root.

Figure 3: Activator-Substrate Behaviour

6 Conclusion

As demands for more organic and innovative approaches to texture synthesis
develop and computational power increase, reaction diffusion equations could
become more widely used and researched. They can also be extended into higher
dimensional space relatively easily. Current supporting research in fields such as
chemical dynamics and mathematical biology have already developed a range
models that could be further experimented within graphics with minimal work.
Another area of potential research would be in interactivity, allowing artists
control over parameters to develop textures in more organic ways.
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